Skip to main content

Advertisement

Log in

Pre-Service Teachers’ Conceptions of Basic Inorganic Qualitative Analysis

  • Article
  • Published:
Canadian Journal of Science, Mathematics and Technology Education Aims and scope Submit manuscript

Abstract

Graduate teachers teaching secondary chemistry in Grades 9 and 10 in Singapore are required to prepare their students for a one-off practical examination that forms part of the General Certificate of Education Ordinary Level (O-level) chemistry examinations taken at the end of Grade 10. A qualitative analysis experiment is usually part of the practical examination. Previous research has shown that secondary students have difficulty in explaining the reactions and procedures involved in qualitative analysis (Tan, Goh, Chia, & Treagust, 2001, 2002), and a possible reason for this situation is that their teachers may also not have adequate understanding of the reactions and procedures involved, and hence, are unable to teach for understanding. A diagnostic test on O-level qualitative analysis was administered to a total 270 pre-service chemistry teachers from 1999 to 2003, and it was found that they had problems explaining the ion-exchange reactions that resulted in the formation of precipitates, the use of dilute acid in tests for anions and reactions involving complex salts such as zincates. The pre-service teachers also had difficulty explaining procedures and reactions involved when substances were heated. If the pre-service teachers have difficulty in understanding the reactions and procedures involved in qualitative analysis, it will not come as a surprise if their students also have similar difficulties with qualitative analysis.

Résumé

Les enseignants diplômés qui enseignent la chimie aux étudiants de 9e et de 10e année à Singapour doivent préparer leurs étudiants à un examen pratique unique faisant partie des examens de fin d’année qui forment le General Certificate of Education Ordinary Level (O-level) en chimie. Cet examen pratique comprend en général une épreuve qualitative qui consiste à identifier les propriétés d’ions inconnus. Les recherches précédentes montrent que les étudiants de niveau secondaire ont des difficultés à expliquer les réactions et les procédés qui entrent en jeu dans les analyses qualitatives (Tan et al, 2001, 2002), et une explication possible de cette situation est que les enseignants eux-mêmes comprennent peut-être mal les réactions et procédés en question, ce qui se traduit par un apprentissage lacunaire chez leurs étudiants (Lenton et Turner, 1999; Valanides, 2000). Par conséquent, en plus d’étudier chez les étudiants le niveau de compréhension des concepts scientifiques difficiles, il est également important de vérifier le niveau de compréhension de ces concepts chez les enseignants. De cette façon, les enseignants pourront prendre conscience de leurs propres difficultés en matière de compréhension des concepts, et analyser comment ces problèmes sont susceptibles d’affecter leur enseignement et l’apprentissage de leurs étudiants.

Un test diagnostique de type qualitatif (de niveau secondaire) a été administré à un total de 270 futurs enseignants de chimie, de 1999 à 2003, et les résultats indiquent qu’ils avaient des difficultés à expliquer les échanges ioniques dans la formation des précipités, l’utilisation d’acide dilué dans l’analyse des anions, ainsi que les réactions impliquant des sels complexes tels que les zincates. Les futurs enseignants avaient également des difficultés à expliquer les procédés et les réactions qui entrent en jeu lorsque les substances sont chauffées. Les discussions en petits groupes et avec toute la classe se sont avérées fort utiles aux enseignants en formation, car elles leur ont permis d’éclaircir de nombreuses notions qui étaient jusqu’alors considérées comme allant de soi, ou qui leur étaient inconnues. Cette situation met en évidence la nécessité d’intégrer, dans la formation des futurs enseignants de chimie à Singapour, des séances portant sur la connaissance des contenus chimiques eux-mêmes, par exemple des discussions sur les concepts qui posent des problèmes de compréhension aux étudiants de niveau secondaire (Garnett, Garnett et Hackling, 1995; Nakhleh, 1992). L’utilisation d’outils diagnostiques et l’introduction de discussions sur les questions soulevées peuvent d’une part s’avérer de bonnes façons d’assurer la qualité des connaissances des futurs enseignants de chimie, et d’autre part justifier l’introduction de connaissances portant sur les contenus dans les programmes de formation didactique, comme le suggèrent Lenton et Turner (1999).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Abraham, M.R., Williamson, V.M., & Westbrook, S.L. (1994). A cross-age study of the understanding of five chemistry concepts. Journal of Research in Science Teaching, 31(2), 147–165.

    Article  Google Scholar 

  • Boo, U.K. (1998). Students’ understanding of chemical bonds and the energetics of chemical reactions. Journal of Research in Science Teaching, 35(5), 569–581.

    Article  Google Scholar 

  • BouJaoude, S.B. (1991). A study of the nature of students’ understanding about the concept of burning. Journal of Research in Science Teaching, 25(8), 689–704.

    Article  Google Scholar 

  • Birk, J.P. & Kurtz, M.J. (1999). Effect of experience on retention and elimination of misconceptions about molecular structure and bonding. Journal of Chemical Education, 76(1), 124–128.

    Article  Google Scholar 

  • Brosnan, T. (1999). When is a chemical change not a chemical change? Education in Chemistry, 36(2), 56.

    Google Scholar 

  • Butts, B. & Smith, R. (1987). HSC chemistry students’ understanding of the structure and properties of molecular and ionic compounds. Research in Science Education, 17, 192–201.

    Article  Google Scholar 

  • De Jong, O., Acampo, J., & Verdonk, A. (1995). Problems in teaching the topic of redox reaction: Actions and conceptions of chemistry teachers. Journal of Research in Science Teaching, 32(10), 1097–1110.

    Article  Google Scholar 

  • Ebenezer, J.V. & Erickson, G.L. (1996). Chemistry students’ conceptions of solubility: A phenomenography. Science Education, 85(5), 509–535.

    Google Scholar 

  • Fensham, P.J. (1994). Beginning to teach chemistry. In P.J. Fensham, R.F. Gunstone, & R.T. White (Eds.), The content of science: A constructivist approach to its teaching and learning (pp. 14–28). London: Falmer Press.

    Google Scholar 

  • Gameti, P.J., Garnett, P.J., & Hackling, M.W. (1995). Students’ alternative conceptions in chemistry: A review of research and implications for teaching and learning. Studies in Science Education, 25, 69–95.

    Article  Google Scholar 

  • Hart, C., Mulhall, P., Berry, A., Loughran, J., & Gunstone, R. (2000). What is the purpose of this experiment? Or can students learn something from doing experiments? Journal of Research in Science Teaching, 37(7), 655–675.

    Article  Google Scholar 

  • Hodson, D. (1992). Redefining and reorienting practical work in school science. School Science Review, 75(264), 65–78.

    Google Scholar 

  • Lenton, G. & Turner, L. (1999). Student-teachers’ grasp of science concepts. School Science Review, 81(295), 67–72.

    Google Scholar 

  • Lin, H.S., Cheng, H.J., & Lawrenz, F. (2000). The assessment of students’ and teachers’ understanding of gas laws. Journal of Chemical Education, 77(2), 235–237.

    Article  Google Scholar 

  • Nakhleh, M.B. (1992). Why some students don’t learn chemistry: chemical misconceptions. Journal of Chemical Education, 69(3), 191–196.

    Article  Google Scholar 

  • Nakhleh, M.B. & Krajcik, J.S. (1994). Influence of levels of information as presented by different technologies on students’ understanding of acid, base and pH concepts. Journal of Research in Science Teaching, 57(10), 1077–1096.

    Article  Google Scholar 

  • Novick, S. & Nussbaum, J. (1978). Junior high school pupils’ understanding of the particulate nature of matter: an interview study. Science Education, 62(3), 273–281.

    Article  Google Scholar 

  • Palmer, D.H. (1999). Exploring the link between students’ scientific and non.scientific conceptions. Science Education, 83(6), 639–653.

    Article  Google Scholar 

  • Peterson, R.F. & Treagust, D.F. (1989). Grade-12 students’ misconceptions of covalent bonding and structure. Journal of Chemical Education, 66(6), 459–460.

    Article  Google Scholar 

  • Peterson, R.F., Treagust, D.F. & Gamett, P. (1989). Development and application of a diagnostic instrument to evaluate grade-11 and -12 students’ concepts of covalent bonding and structure following a course of instruction. Journal of Research in Science Teaching, 26(4), 301–314.

    Article  Google Scholar 

  • Quilez-Pardo, J. & Solaz-Portoles, J.J. (1995). Students’ and teachers’ misapplication of Le Chate-lier’s principle: Implications for the teaching of chemical equilibrium. Journal of Research in Science Teaching, 32(9), 939–957.

    Article  Google Scholar 

  • Ribeiro M.G.T.C., Pereira, D.J.V.C., & Maskill, R. (1990). Reaction and spontaneity: the influence of meaning from everyday language on fourth year undergraduates’ interpretations of some simple chemical phenomena. International Journal of Science Education, 12(4), 391–401.

    Article  Google Scholar 

  • Russel, J.W., Kozma, R.B., Jones, T., Wykoff, J., Marx, N., & Davis, J. (1997). Use of simultaneous-synchronized macroscopic, microscopic, and symbolic representations to enhance the teaching and learning of chemical concepts. Journal of Chemical Education, 74(3), 330–334.

    Article  Google Scholar 

  • SPSS (2002). SPSS for Windows (Release 11.5.1) [Computer Software]. Chicago: SPSS Inc.

    Google Scholar 

  • Tan, K.C.D., Goh, N.K., Chia, L.S., & Treagust, D.F. (2001). Secondary students’ perceptions about learning qualitative analysis in inorganic chemistry. Research in Science & Technological Education, 19(2), 223–234.

    Article  Google Scholar 

  • Tan, K.C.D., Goh, N.K., Chia, L.S., & Treagust, D.F. (2002). Development and application of a two-tier multiple choice diagnostic instrument to assess high school students’ understanding of inorganic chemistry qualitative analysis. Journal of Research in Science Teaching, 39(4), 283–301.

    Article  Google Scholar 

  • Tan, K.C.D., Goh, N.K., Chia, L.S., & Treagust, D.F. (in press). Qualitative analysis practical work. School Science Review.

  • Tan, K.C.D. & Treagust, D.F. (1999). Evaluating students’ understanding of chemical bonding. School Science Review, 81(294), 75–83.

    Google Scholar 

  • Tasker, R. & Freyberg, P. (1985). Facing the mismatches in the classroom. In R. Osborne & P. Freyberg (Eds.), Learning in science: The implications of children’s science, (pp. 66–80). Auckland, London: Heinemann.

    Google Scholar 

  • Valanides, N. (2000). Primary student teachers’ understanding of the particulate nature of matter and its transformation during dissolving. Chemistry Education: Research and Practice in Europe, 1(2), 249–262 [Available at https://doi.org/www.uoi.gr/cerp/]

    Google Scholar 

  • Wandersee, J.H., Mintzes, J.J., & Novak, J.D. (1994). Research on alternative conceptions in science. In D.L. Gabel (Ed.), Handbook of research on science teaching and learning (pp. 177–210). New York: Macmillan.

    Google Scholar 

  • Watson, R., Prieto, T., & Dillon, J.S. (1997). Consistency of students’ explanations about combustion. Science Education, 81(4), 425–444.

    Article  Google Scholar 

  • White, R.T. (1994). Dimensions of content. In P.J. Fensham, R.F. Gunstone, & R.T. White (Eds.), The content of science: A constructivist approach to its teaching and learning, (pp. 225–262). London: Falmer Press.

    Google Scholar 

  • Woolnough, B. & Allsop, T. (1985). Practical work in science. Cambridge: Cambridge University Press.

    Google Scholar 

  • Wu, H.-K., Krajcik, J.S., & Soloway E. (2001). Promoting understanding of chemical representations: Students’ use of a visualization tool in the classroom. Journal of Research in Science Teaching, 38(7), 821–842.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, KC.D. Pre-Service Teachers’ Conceptions of Basic Inorganic Qualitative Analysis. Can J Sci Math Techn 5, 7–20 (2005). https://doi.org/10.1080/14926150509556641

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1080/14926150509556641

Navigation